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Abstract A field lhenretical formulation of the rather easy problem of N identical, one- 
dimensional bosons. interacting painvise via harmonic oscillator potentials of equal force 
comtants is given, in a way similar to lhe way lhe nonlinear Schmdinger model provides a 
field lhenretical formulation of a onedimentional, &function Bose gas. The nonlinear i n t e n  
differential equation obtained for the complex scalar field of the model is treated classically, 
and solved in the semiclassical limit of a large number of particles. Working in the centre of 
mass h e  of the field. a sequence of operators that would raise or lower the energy of a sme 
by definite amounts without changing its particle number are conrrmcted f" certlin bilinear 
expressions in the field. These operators have, in the limit of a large number of particles, 
commutation relations similar to those of the Fourier modes of a compact h e  field, except that 
the first mode is missing as a result of lhe fact that the field in the cenue of mass frame is 
subject to the obvious constraint that its centre of mass always coincides with lhe coordinate 
origin. The quanNm stam can be labelled by the total cenrre of mass momentum. and the 
quasi-particle numbers in each of lhe indepndent oscillalor moder The energy s p e c t "  of the 
system is calculated. giving the Same results as he exacl, quantummechanical N-bady analysis. 

1. Introduction 

The problem of N identical bosons interacting painvise via harmonic oscillator potentials 
of equal force constants is exactly solvable both classically and quantum-mechanically in 
any number of dimensions [l]. In the one-dimensional case the Hamiltonian has the form 

N P: 2 
.4 = - + 2c (Xi  - Xi )  

i=l 2~ ~ i,j=1 

where we have set h = 1. 
We can go to normal modes by means of the Jacobi coordinates 

for k = 1,2,. . . , N - 1 

and 
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in terms of which the Hamiltonian takes the form 

A Abouelsaood and A Abuelseoud 

where vi is the momentum conjugate of b. 
Hence the Hamiltonian separates into the sum of the Hamiltonians of N - 1 identical 

harmonic oscillators of mass p and angular frequency WN = m, plus the centre of 
mass energy which equals the square of the centre of mass momentum P ~ J  divided by twice 
the the total mass Np. 

This problem however has a non-trivial part, which is to find what constraints the Bose 
symmetry would impose on the specbum of the quantum theory. It turns out that the 
allowed energy values and their precise degrees of degeneracy are given by the formula 

where 80 is the zero point energy of the N - 1 oscillators, and is given by 

and nk are a set of non-negative integers (the occupation numbers of the harmonic oscillator 
levels), which, when taken along with the centre of mass momentum PN, completely specify 
the N-particle quantum state. Observe that in this formula the occupation number of the 
first level does not appear. 

Although the complete solution sketched above for the N-particle problem has been 
known for a long time, it may still be of some interest to be able to derive the above 
results from a field-theoretical point of view, just in the same way as the problem of 
N one-dimensional bosons interacting pairwise via &function potentials can be solved by 
applying the quantum inverse scattering method to the nonlinear Schriidinger model [2], 
thus retrieving the well-known results about the N-body problem. It is the purpose of this 
series of papers to do this. The first paper will deal exclusively with the classical and 
semiclassical Theory. A fullyquantum treatment of the same problem will then follow. 
The goal will be to derive equation (4) using field-theoretical methods. 

The Hamiltonian of the (1 + 1)dimensional non-relativistic field theory corresponding 
to the many-body problem (1) with the mass p set equal to f is given by 

with the complex scalar field @ obeying the following equal-time commutation relations 

[@(x. t ) ,  @(x’.  t ) ]  = 0 = [@* (x . t ) ,  fl(x’, r ) ]  [@(x. t ) .  @”(x’. t ) ]  = s(x - x’)  . (7) 
The organization of this paper is as follows. In section 2, the classical field theory will 
be considered, and the most obvious symmetries and conservation laws will be discussed. 
In section 3, a method for solving the initial value problem for the field equation will be. 
introduced. This method is based on making a series of field transformations that reduce the 
field equation to a quasi-hear form that can be dealt with using the o r d i i  techniques of 
linear analysis. In section 4, the canonical structure. of the classical model will be studied. 
The difficulties of quantizing the system will be outlined in section 5, and a semiclassical 
approach valid for a large number of particles is suggested. The excitation operators are 
inmduced in section 6. The semiclassical large-N h i t  is considered in section 7, and the 
low-lying states are consbucted, thus obtaining equation (4) for the energy spectrum. 
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2. Symmetries and conservation laws 

In the classical theory the field + is a c-number complex scalar field obeying the Poisson 
bracket analogue of the commutators (7) 

i (+(x. tt, +(x’, t ) )  = 0 = i {+%, t ) .  +*(x ’ , t ) ]  i (+ (x ,  t ) .  +*(x’ , t ) ]  = S ( X  - x ’ ) .  

(8) 
Using equations (6) and (8) we obtain the classical field equation 

ia,+(x, t )  = -a:@(x, t )  + ~ c + ( x ,  t )  dr’ (X - x’)~+*(x’, t)+(x’, t )  (9) s 
For any function A of x and a,, it is useful to define the quantity 

just as in ordinary quantum mechanics. 

(1) The total charge (particle number) 
The theory has the following obvious constants of motion: 

N = +*(x, t )+(x,  t) dr = (l), I 
(2) The centre of mass momentum per particle 

(3) The total energy (or Hamiltonian) 
~ ~ 

H = s ( a , y ) ( a , + ) d x + c s /  + * + ( x x x - x )  r 2  4 * +(x )drdr ’  

which may be written in the form 

(13) 2 1 2 2  1 2  2 H =(-ax + p x ), - ;iw (x), 

where o2 = 8cN. This reflects the fact that the model is invariant under global gauge 
transformations, spatial translations and time translations respectively. 

A fourth conserved quantity is the Casimir operator for the well known harmonic 
oscillator SL(2) algebra [3] generated by 

(14) xo = ;(uta + T), 1 x+ = ; (a”,, x- = 4 ((a+)2), 
where 

This algebra has the form 

i{x+.xol =x+ 
The Casimir operator in this case is given by 

x = x, - x+x- 

i [ x-, xo ] = -x- ~ i (x, . x. } = 2x0 . (16) 

(17) 2 

and has zero Poisson brackets with the three other conserved quantities N ,  po and H, and 
hence is also conserved. 
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3. Solving the initial value problem 

The initial value problem for equation (9) consists in finding solutions of this equation 
satisfying the initial conditions 

@ ( x ,  = 0) = M X )  (18) 

A Abouelsaood and A Abuelseoud 

where &o(x) is some given function of x .  We shall also require the boundary conditions 

lim @ ( x , t )  = O  
x+*m 

which should also be satisfied by the initial data The method used here is to make a 
number of field transformations that will reduce the nonlinear partial integro-differential 
equation (9) into a linear problem that can be solved using the ordinary techniques (e.g. 
mode expansion, Green functions, etc), then by inverting the linearizing transformations we 
obtain the required solution to the nonlinear problem. This program parallels the inverse- 
scattering method program [e] for solving some nonlinear partial differential equations, 
but the details are quite different, particularly since this field theory, due to the confining 
quadratic potential, has no elemenmy particle scattering states, but only solitons. 

The linearization process consists of three steps: 

(1 )  Going to the centre of massframe. The centre of mass coordinate xo is defined as 

xo(0 = {x)+ / N  . (20) 

One can easily see that it moves with a constant velocity vo = 2p0, where PO. the centre of 
mass momentum per particle, is given by equation (II), which means that 

(21) xo(t)  = XO( f  = 0) + 2po t .  

The centre of mass field @I is related to the original field @ by a combined spatial translation 
and Galilean transformation in the form 

@ ~ ( x , o  =exp{-i[po(x+xo) - p ; t ] } @ ( x + x o , t ) .  (22) 

It can be easily seen that the centre of mass of 41 coincides with the coordinate origin, 
which means that 

( d o ,  = 0 (-iax)+l = 0. (23) 

From equations (9) and (22) it can be easily seen that satisfies the field equation 

ia,@l(x,t) = [ p ; -  a:+~02xz+2C(x2)~1]~1(x,t).  (24.) 

In terms of @I the Hamiltonian has the form 

H = p;N + (-3; + & ~ ~ x ~ ) ~ ,  . 

(2) Elimination of the ( x z )  ferm. Although the transformation (22) has simplified to some 
extent the field equation (9), the resulting equation (25) is still nonlinear since the quantities 
o2 and (x2)+, are quadratic functianals of the field 41. The first quantity o2 does not pose 
any problem since it is a constant of motion just as the factor p i .  
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&(x. 0 = e x p [ - ( W W i +  - i - ) ] 4 1 ( ~ t )  

To eliminate the (x2)+, term we define a new field.& by the relation 

(26) 
where 

2 0 - 2  - 1 (a'a + ;)+, 
are the generators for the 41 field which obey the same algebra (16) as those of the original 
4 field. One can verify that the field & satisfies the equation 

(3)  Factorizing the N-dependence. Equation (27) is almost liiear, since all nonlinearity 
arises from the conserved multiplicative factors p:, N and If. So this equation lends 
itself to the ordinary techniques used to solve linear differential equations. It is however 
advantageous from a canonical point of view, with an eye on the quantum theory, to make 
a scaling transformation to partially factor out the Ndependence of d. So we define a 
new field & by the relation 

This field obeys the equation 

It can be easily seen that the Hamiltonian can be written in tem of the & field as 

H = P;N + ,,%(-a: + 2cX2)+, 

while the SL(2) generators are the same as those for 41 and &. 

the field 43 as follows: 

(30) 

The general solution of equation (29) can be written in terms of the Fourier modes of 

where & ( x )  are the energy eigenfunctions of a harmonic oscillator of mass p = $ and 
angular frequency 

~~ 

wg = 4% = 0/&. 
Substituting equation (31) in the field equation (27) for &, we obtain 

which has the obvious solution 
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4. Canonical structure of the model 

The next task would be to consider the quantum theory. As a first step towards this, Poisson 
brackets for the quasi-linear field 43 and its Fourier modes should be derived. This is quite 
a straightfoward, though a somewhat tedious calculation in which the general properties of 
Poisson brackets are used repeatedly, in particular the obvious relation 

A Aboueisaood and A Abuelseoud 

~ ( x  + A ) .  B I  = IWL A L + ~  + { A ,  B I ~ A X  + A )  (34) 

where A and B are any two functions of the canonical variables. The details of the derivation 
will be omitted here since they are not particularly interesting, and only Poisson brackets 
for the field 43 will be listed below. 

(35) 

i ( 4 (x, t ) ,  @ ( X ’ ,  t ) )  = S(X - x’) + ( i / ~ )  (.ax, +X’a,) &(x, t)$;(x’, t )  . (36) 

The above results have a very simple interpretation. We recall that the field & is subject 
to two constraints 

i (&(~.r) ,+~(x’ , r )}  = ( V N )  (.ar -~‘a,)@~(x,t)&(x’,t) 

( X ) h  = 0 (-iax)h = 0. (37) 

According to Dirac’s classification [7], these constraints are called second class since their 
Poisson bracket 

(Wh, (-iWh) = N (38) 

is non-zero, and is not a linear combination of other constraints. In systems with such 
constraints, Poisson brackets of the fields should be replaced by Dirac brackets in order 
to be consistent with the constraint equations. For any two dynamical variables A and B, 
Dirac bracket in our case is given by 

1 1 
{ A .  BID = { A ,  B }  + ( A ,  Wh] 73 [ (-iaJh. B ]  - {A, (-iW+3} 73 [ ( x ) ~ ,  B ]  (39) 

where (x )+ ,  and (-ia,)h are set equal to zero only after evaluating their Poisson brackets 
considering $3 and 4; to obey the Same equal-time Poisson brackets as 4 and @* (equation 
(8)). This gives precisely equations (35) and (36) as Dirac brackets for $3 and 4;. 

Considering now the Fourier modes a. of the field & as defined by equation (31), we 
can easily see that the two constraints (37) are equivalent to the complex constraint 

A direct computation shows that Poisson brackets for these modes are given by 

These Poisson brackets also follow as Dirac brackets for the Fourier modes of a scalar field 
constrained by equation (40). It is this point of view that will prove most fruitful when we 
come to discuss the quantum theory. 
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In terms of the Fourier modes of the field $3 we have 
m .. 

N = Ca;a. (43) 

The following Poisson brackets can easily be derived using equations (41x45): 

i (a,,,, H }  = 1 (m + 4) OQ, i [a,,,, N} = a, (46) 

i {a,, f o }  = (m + 4) a,,, . (49) 

The oscillator particle numbers N, = ais, are all conserved quantities, so the model 
has an infinite number of conservation laws, but unfortunately these conserved quantities do 
not have vanishing Poisson brackets among themselves as required for an exactly solvable 
model 15, 61. In fact Poisson bracket for any two such oscillator numbers is given by 

i(Nm.Nnl = ) 
1 

+mi+n. (50) 

(7 m + ~a:a,+l- fia;-,a,) (vGTia:+la.  - .~iia,*a,-, 

5. Quantization 

The next task now would be to try to quantize the system. In doing this we immediately run 
into difficulties. Although the Fourier modes of the field $3 obey the simple equations of 
motion (S), and have the simple Poisson brackets (46x49) with the field bilinean, Poisson 
brackets among the Fourier modes themselves have the rather complicated forms (41) and 
(42). Although these two equations are quite well-defined as classical Poisson brackets, 
there is some ambiguity in the operator ordering of the commutators corresponding to these 
Poisson brackets. One can easily check that the most obvious choises for the required 
ordering are not consistent with the following crucial properiy of commutators 

[A, he] = [A, 4 e  + b[A, e] 
in the sense that the commutator of a product of Fourier modes of $3 would not necessarily 
have vanishing Poisson-Dirac brackets with the constraint (40). Even if some operator 
ordering consistent with all the requirements were found, it would not be clear how to 
proceed further since we do not know the Hilbert space representation of the quantum 
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analogue of the algebra (41) and (42). The Fourier modes cannot be interpreted as quasi- 
particle annihilation operators since they are not independent, being subject to the constraint 
(40). The would-be quasi-pwiicle numbers N,, though conserved, cannot be specified 
arbitrarily even at the classical level since they have non-vanishing Poisson brackets given 
by equation (50). From the above, it appears that a direct quantization of the classical 
solution is not such an easy task. We should remember, however, that the many-body 
problem correspondiig to this field theory is moderately easy to solve. As explained earlier, 
the energies and their precise degrees of degeneracy for N bosons of mass p = $ each are 
given by equation (4). In the rest of this paper, we shall show that equation (4) can be 
obtained in the semiclassical limit of a system of a large, fixed number N of particles near 
its ground state. 

Before doing this, it may be useful to make the following remark. It might appear at 
first glance that the Poisson-Dirac algebra for the field &, as given by equations (35) and 
(36), reduces in the IargeN limit to the Poisson algebra for a free, unconstrained field as 
a result of the fact that all the extra terms in the algebra have an explicit factor of 1 / N  
in front of them. This is, however, not true since some expectation values in N-particle 
states of the products of the field operators which the factor 1/N multiplies are themselves 
of first order in N, thus giving N-independent corrections to physical quantities. We shall 
therefore try to construct another set of operators whose commutator algebra would have 
a simple la rge4  limit. This will eventually explain the absence of the k = 1 term from 
the summation on the right hand side of equation (4). Such a term would be present if the 
larg-N limit of equations (35) and (36) coincided with the corresponding relations for a 
free, unconstrained scalar field. 

A Abouelsaood and A Abuelseoud 

6. The raisinghowering operators 

Since we are interested here in the spectrum of excitations of a system of a fixed number 
of particles, it is natural to look for operators that create or destroy such excitations without 
changing the particle number. The simplest such operators are field bilinears in the form 

where &x , a,) is some function of x and a,. From a classical point of view, these quantities 
have zero Poisson brackets with the particle number N, as can be easily checked using 
equation (74). We shall be interested in those operators which lower or raise the energy of 
the states by a definite amount. The general form of a lowering operator A ,  is 

(53) 

where a , ~  are arhitmy constants. Making use of equation (46). we can easily see that 
Poisson bracken of A ,  with the Hamiltonian H is given by 

(54) i {A,, HI = mwA, 

which means that A, lowers the energy by m o  units, while its Hermitian conjugate A i  raises 
the energy by the same amount. This is valid for any choice of the coefficients a,,~. but the 
requirement of Bose symmetry picks out one operator A,,,, unique to within a multiplicative 
factor, for each positive integer value of m. This can be seen as follows. Since we are 
dealing with bosons, the operators A; which create the the quasi-particles should commute, 
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and the operators A, which destroy the quasi-particles should also commute. Now Poisson 
bracket for any two operators A, and Ah of the form (53) can be easily calculated using 
equations (41) and (42). The result is 

where 

Ymb = ~ m , ~ v G X T i - a m , k + d X  (57) 

with similar relations for f l  and y' in terms of a'. When m # n the bracket vanishes only 
when each of the three sums on the right hand side of equation (91) vanishes separately 
since these sums have different structures. To make the third term vanish, we must have 
either BAk = 0 or ymk = 0 for all values of k. The first condition cannot be satisfied for all 
values of k. The altemative condition, that of the vanishing of the y-coefficients, gives 

where C,,, = a,,,.~ is a possibly m-dependent normalization constant. If we now choose the 
coefficients in the same way, namely . .  

the whole Poisson bracket for A, and A; vanishes. Hence the required operators have the 
form 

Putting m = 0 in equation (€io), we see that Ao = CON,  and hence Ao is proportional to 
the particle number, while putting m = 1 gives A I  = 0 by the constraint (31). Hence the 
actual quasi-particle creation and destruction operators are A, and A; with m 2 2. 

It is not difficult to see that 

where a and at are given by equation (15), and are in fact the one-particle, firstquantized 
harmonic oscillator lowering and raising operators. Now, making,use of the definitions (15) 
for a and at, we can write equation (39) which gives the Poisson-Dirac bracket for any 
two dynamical variables A and B in the form 
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This form of the relation is more useful for our purposes since for any two one-particle 
operators A and , we have the following canonical Poisson bracket: 

i[(A)h. (s)h) =([A, E])+,. (63) 

A Abouelsuood und A Abuelseoud 

In particular, for powers of the operators U and at, we have 

[U", U"] = 0 

We shall now make the following choice of the normaliiation constants C, 

c, = 1 / m  

hence 
1 

A, = -(U"), m 
Equations (63H65) may now be used to derive the following relation valid for m 5 n: 

where 

The form in which equation (67) has been Written may not be the simplest, but it will be 
more convenient for our purpose later. 

7. The large-N limit 

We have been able in the previous section to construct a maximal sequence of commuting 
operators A, that would lower the energy by definite amounts, while not changing the 
particle number, with their Hermitian conjugates raising the energy but still not a€fwting 
the particle number. We still, nevertheless, have two problems to deal with. First, the 
construction of the previous section has been a classical one, based on the Poisson-Dirac 
brackets of the dynamical variables, and not addressing the problem of operator ordering. 
Then the Poisson-Dim brackets (66) are still very complicated, and the algebra does not 
even close since the operators BA!!* appear on the right hand si& of equation (66). Hence 
the introduction of the A-operators seems at the first glance to have worsened the situation, 
leading to a more complicated algebra than that of the Fourier modes given by equations 
(41) and (42). The truth of the matter is that equation (66) has a very simple limit when the 
number of particles N becomes very large. To see this, let us try to see how the different 
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terms in the equation behave when N becomes very large, with the system not very far 
from its ground state. In this case 

N - NO = a;ao 

hence 

a0 - 0(N1lz) 

while 

a, - OfNO) forn#O.  

Now A, has the form 
1 

A,,, = - ( m a l a ,  + . . .) m 
hence 

A,,, - O ( N o ) .  

Also 

B y  - O(N0) 
since the lowest order Fourier mode it contains is a; as we can See from its defining equation 
(67). This means that for m 5 n 

This relation is also valid in the quantum theory as a commutation relation of the two 
operators A, and A,' since all operator-ordering ambiguities are at least of first order in 
N-'. We can now define the new set of operators A,,, by the relation 

where Int [(N + 1)/2] is the integer part of (N + 1)/2. A short calculation shows that the 
commutation relations for these new operators are 

[i,, A,] = 0 (70) 

Hence in the limit of large N, these operators behave as the raising and lowering operators 
for an infinite set of independent harmonic oscillators such as the Fourier modes of a 
compact free field, and the states of the N-particle system can be labelled by the number 
of quasiparticles in each oscillator modes. These numbers n, are the eigenvalues of the 
operators 

(73) fi - A ' A  m -  m m  
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which commute among themselves, and with the Hamiltonian. We have seen earlier that 
the relevant values of m are the integers 2 2 since A0 is proportional to the total particle 
number N, while A I  and A; vanish identically on account of the constraint (40). The 
operators A2 and A; are in fact related to ?* by 

A Abouelsaood and A Abuelseoud 

Let us now define the ground state 10) of the N-particle system by 

PNIo)  = 0 

$10) = NIO) 

AmIO) = 0 f o r m 2 2  

where 

& = (-iax)+ 3 = (1)d. 

(75) 

Let Eo be the energy of this state. We can now define an excited N-particle state of total 
momentum p~ and quasiparticle numbers n2.113.. . . by 

PN I P N :  n2, n3.. . .) = PN I P N ;  nz. n3 . .  . .) (76) 

(77) 

A 

2m IPN; nz, n3 . .  . .) = n,  IPN; n 2 . n ~ .  . .) . 
This state can be obtained from the ground state 10) by repeated application of the 
quasipatticle creation operators and the momentum-changing operator 

is the canonical conjugate of P N ,  which means that 

hence 

i2PN [io, fi] = -. 
N 

Using equations (72) and (SO), we can easily see that the energy of the state defined by 
equations (76) and (77) is given by 

which is precisely the value given by the exact N-body relation (4). This is the basic result 
of this work. 
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